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Nonlinear Errors in Variables: Estimation of Some Engel Curves

by J. A. Hausman, W.K. Newey , and J.L. Powell 1

The errors in variables problem has been long known in statistics;

Adcock (1878) is perhaps the first reference which points out the problem. In

the simple bivariate regression model the result of errors in variable is a

downward bias (in magnitude) of the estimated regression coefficient: the "iron

law" of econometrics as known to MIT students. During the formative period of

econometrics in the 1930' s, considerable attention was given to the errors in

variable problem. However, with the subsequent emphasis on aggregate time series

research the errors in variables problem decreased in importance to most

econometric research. In the past decade as econometric research on micro data

has increased dramatically, the errors in variables problem has once again moved

to the forefront of econometric research.

Solutions to the errors in variables problem for the linear regression

model have been well explored and are often used by econometricians . The most

common solution is the use of instrumental variable estimation (IV) which depends

on the existence of an appropriate instrument or repeated observation of the

MIT, Princeton University, and University of Wisconsin. We thank Greg Leonard
for excellent research assistance and the National Science Foundation for
financial support. A. Deaton, A. Lewbel, R. Pollak, D. Jorgenson and J. Poterba
made helpful suggestions. Presented as the Jacob Marschak Lecture of the
Econometric Society at the 1988 Australian Economics Congress.

2 The notion of the "iron law" is that the estimated effect is (almost) never as
large as economic theory or the applied researcher expects it to be. Of course,
in the multiple regression situation with many right hand side variables the
result need no longer hold true. Nevertheless, the folklore in econometrics plus
years of reading students econometrics papers results in the belief that downward
bias in coefficients estimates is a pervasive problem in micro data parameter estimates.

3 Griliches (1986) discusses micro data problems which lead to errors in
variables problems in many typical econometric data sets.
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variable measured with error. Two other solutions exist, but they have only

infrequently been used by econometricians . The first alternative solution

involves knowledge or an estimate of the variance of the measurement error(s) of

the right hand side variable(s) or its relative size compared to the variance of

the stochastic disturbance, which can be partly or entirely composed of the

measurement error in the left hand side variable. This type of knowledge is

usually not available to econometricians. The second alternative solution is to

use distributional properties of the right hand side variables or to use higher

order moments which depend on distributional assumptions, beyond the first two

moments, to estimate the parameters. This approach again has only rarely been

used by econometricians.

Thus, the IV appropach is by far the most widely used technique for

dealing with errors in variables problems in linear multiple regression problems.

The linear model with measurement error is isomorphic to a linear simultaneous

equation model, so that two stage least squares or a closely related estimator is

Zellner (1970) and Goldberger (1972) extend the single equation errors in
variables problem to the multiple equation context. Geraci (1977), Hausman
(1977) and Hsiao (1976) consider the errors in variables problem in the
simultaneous equations situation. An excellent survey is given by Aigner, Hsiao,
Kapteyn, and Wansbeek (1984).

Reiersol (1950) demonstrated identification of the errors in variables problem
using distributional assumptions. Kapteyn and Wansbeek (1983) generalize the

result to the multiple regression context. Bickel and Ritov (1987) apply the
method in an adaptive estimation framework. Geary (1942) originally proposed
using higher order moments in estimation in the errors in variables problem.
Higher order moments may offer a useful methodology given the increasingly large
data sets of many thousands of observations used by econometricians. They can be
applied in a straghtforward method of moments procedure. However, the technique
has been little used to date and J. Hausman has been unsuccessful in a few
previous attempts.



3-

used. However, this relationship no longer holds in the nonlinear regression

framework as recently noted by Y. Amemiya (1985). The reason that 2SLS no longer

leads to a consistent estimator in the nonlinear errors in variables problem is

because the error of measurement is no longer additively separable from the true

variable in the nonlinear regression model. Application of 2SLS or nonlinear

2SLS (N2SLS) leads to inconsistent estimates.

A staightforward way in which to see why 2SLS or N2SLS does not yield

consistent estimators in the nonlinear errors in variable model is to consider

the linear in parameters and nonlinear in variables specification:

(1.1) yi - /So + Pi g(2i) + *i i ~ 1 n

where g(z) is a sufficiently smooth function to do Taylor approximations. As in

the linear errors in variables framework, we assume that z is unobservable

;

instead the observed varible Xj_ takes the form:

(1.2) X£ - Zi + r?i i - 1 n

where tj^ is assumed to be uncorrelated with z^. Replacing the unobservable z

with x in equation (1.1) and taking a Taylor expansion leads to:

Fuller (1987) discusses many of these other estimators which may improve the
finite sample performance of IV-type estimators in the errors in variables context.

The failure of additive separability also arises in the reduced from of the
nonlinear simultaneous equations problem where the additive stochastic
disturbance of the structural form enters nonlinearly into the reduced form.

This situation leads to N2SLS and N3SLS being inefficient relative to ML in the
nonlinear simultaneous equations model as demonstrated by T. Amemiya (1977)

.
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(1.3) y L - P + Pi g(xi) + «i - ft g
1 (x i )r?i - 0! 2 gUl

(Xi ) fu.J/J'1

where
[ j ] denotes the j th derivative of g. Inspection of the first term of the

Taylor expansion in equation (1.3) demonstrates the fundamental problem with

N2SLS or other IV techniques. The instrument must be correlated with g(x^) , but

be uncorrelated with rj^ and e^. However, the first term of the Taylor expansion

contains both r/^ and the derivative of g(x^) . In the linear errors in variables

framework the first derviative of g(x^) is unity so the observation error is

linearly separable from the right hand side variable. This linear separation is

not present in equation (1.3) so that, even if the higher order terms of the

Taylor expansion were absent, it is unlikely that an appropriate instrumental

variable would exist. However, the additional factor of the added terms in the

Taylor expansion beyond the first make the problem even more unwieldy to solve

with the usual instrumental variable techniques.

To date the methods proposed to estimate the nonlinear errors in

variable model depend on very strong restrictions on the distribution of the

measurement errors of the unknown regression coefficients. However, knowledge of

the parametric form of the distribution function of the measurement errors is not

sufficient for consistent estimation. An additional assumption is needed that

the true values of the regressors, e.g. the Zj_ in equation (1.1), are also

assumed to be random drawings from a distribution with a known parametric form.

Instead, if the true regressors are treated as fixed but unknown constants, then

maximum likelihood estimation is inconsistent due to the "incidental parameters"

problem of Neyman and Scott (1948).

^

8 Aigner et. al . (1984) have a brief discussion on ML for nonlinear errors in
variables models.
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An alternative appi"oach assumes that a large number of measurements on

each true regressor exist, so that the average of these measurements closely

approximates the true regressors. Consistent estimation of nonlinear errors in

varibles models then follows because the covariance matrix of the measurement

errors for the regressors approaches zero as the sample size increases.

Estimators under this type of assumption have been proposed by Villegas (1969)

,

Dolby and Lipton (1972), Wolter and Fuller (1982b), Powell and Stoker (1984), and

Y. Amemiya (1985). This situation seems unlikely to occur very often in

econometrics

.

Lastly, Griliches and Ringstad (1970) analyzed a quadratic

specification and demonstrated that the bias of least squares can be exacerbated

by the nonlinearity . Wolter and Fuller (1982a) propose a consistent estimator

for the quadratic specification so long as the errors are normally distributed.

Neither instrumental variables nor additional measurements are required for

estimation.

In this paper we discuss consistent estimators for nonlinear regression

specifications when errors in variables are present. Our estimators depend on

the existence of instrumental variables or a single repeated observation. Thus

we do not require the large number of measurements or shrinking covariance matrix

assumption of much previous research.

In Section 2 we discuss an estimator for polynomial specifications in

the true regressors. This estimator proposed by Hausman, Ichimura, Newey, and

Powell (HINP)(1986) leads to consistent and asympotically normal estimators so

long as either instrumental variables or an additional measurement of each true

regressor are present. An interesting result emerges in the instrumental



•6-

variable case because the model turns out to be overidentified. Thus, tests of

the model specification are possible.

In Section 3 we discuss an estimator for the general nonlinear

specification when errors in variables are present. This estimator proposed by

Hausman, Newey , and Powell (HNP)(1988) yields a consistent estimator when an

additional measurement of each true regressor is present. To date, we have not

been able to establish asymptotic normality of the estimator or to extend it to

the instrumental variable situation. However, Monte Carlo evidence provides some

indication that the distribution of the estimator is not badly behaved so that we

use bootstrap estimates of the precision of our estimates.

In Section 4 we apply our methodology to estimation of Engel curves on

household data, a problem which econometricians have done considerable previous

research on. Here we find a number of interesting results. First, we find that

the "Leser-Working" specification of budget shares regressed on the log of income

or expenditure should be generalized to higher order terms in log income. Also,

we find that errors in variables in either reported income or expenditure should

be accounted for. However, we do not find evidence that more general functional

forms beyond polynomial specifications in income improve estimation of the Engel

curve significantly. Lastly, and perhaps most interesting, we find rather strong

support for the Gorman (1981) rank restriction on the matrix of coefficients for

the polynomial terms in income. Thus, after over 100 years of Engel curve

analysis, a restriction from economic theory may affect the econometric

estimation. This result is remarkable if future research leads to similar

findings

.
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II. Identification and Estimation of the Polynomial Functional Model

We first consider estimation of the parameters of the polynomial

specification

K
(2.1) yt

= S 0*- ( Zi )J + £i i - l,...n
j=0 J

which is a kth order polynomial in the unobservable variable z^. We will treat

Zj_ as a random variable with unknown distribution function; alternatively, the

{zj_} can be interpreted as a sequence of fixed constants with appropriate

modifications in the regularity conditions. The observed variable x^ has the

same relationship to the unobserved variable Zj_ as in Section I:

(2.2) xj_ - Zi + rji i - 1 n.

Our first estimator uses the additional information of a single repeated

measurement w^ of z^ with an additional measurement error v^ defined by

(2.3) w^-z^ + v-^ i-l,...,n.

Two points of interest arise from the specification and assumptions of

equation (2.3). First, we will assume that v^ is uncorrelated with e £ and rjj_ and

is independent of Zj_. The independence assumption is required by the

nonlinearity . These assumptions are analogous to the linear case so that w^

could be used as an instrumental variable if the specification of equation (2.1)

were linear. Second, we will not impose the usual restriction E(v^) - so that

a constant term can be present in the measurement equation (2.3). Alternatively,

vj can be assumed to have zero mean, but the slope coefficient of zj in equation
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(2.3) can then be non-unity. The details of the derivation of the estimator in

this latter case is left to the interested reader.

We now turn to sufficient regularity conditions to allow identification

and estimation of the /3j in equation (2.1). Define the matrix norm
|

|A|
|

=

maxi
> j

| ajj |
. We make

Assumption 1 : The random variables e^, r?^, vj_ , and z^ are jointly

i . i . d. with

(i) E ( £i |
z i( Vi) - E (r/i | Zi, V£) -

(ii) vj is independent of z^

(iii) E
1

1
(e it Vi , Vi 2K , Zi

2K
)||

2 < cc

(iv) All necessary moment matrices are nonsingular.

The i.i.d. assumption can be relaxed to allow for either dependence or

heterogeneity or both. Assumptions A.l(i), (iii), and (iv) are standard

assumptions to allow derivation of both identification and the asymptotic

distribution of the estimator. Only assumption A.2(ii) is stronger than in the

usual linear case. Independence is necessary because of the nonlinear

specification. Note that assumption A.l(i) could be strengthened to independence

for purposes of symmetry; we require only the weaker no correlation assumption.

For identification we consider the population analogue of the normal

equations. Define the moments £p
- E[y^ (z^)P] for p - 0.....K and 4>m - E[(zi)m ]

for m - 0.....2K. The normal equations z'y - (z'z) /J take the form

K
(2.4) Cp - Z

Q
Pi *j+p P - K
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Both sides of equation (2. A) depend on the unobservable variables z^. However,

the unobservable moments can be derived from the observable moments E[x^ (w^)P]

,

E[(wi)P], and E[yj (w^)P] . We now use assumption A.l and the fact that E[(wj_)°]

= E[( Zi )°] -= E[(vi)°] = 1 to find:

(2.5) E -
[Xi (wi)J- 1

]
-

J
2
q

[

J

p ] <I>p+1 ^_pl for
p-0

j
- 1 ,2K where v$ - E [

(vt ) J ]

.

(2.6) E [(Wi)J] - L
[J]

*
p ^j.p for j

- 1 2K.

(2.7) E [y i (w i
)J] = S

Q
[ p ] Cp i/j-p for j

- K.

Equations (2.5) and (2.6) allow identification of z'z, and equation (2.7) then

allows identification of z'y. That is, equations (2.5)-(2.7) defined (5K + 1)

equations which have a one-to-one relationship between the moments of the

observable variables and the (5K + 1) elements of the unobservable moment vectors

$ and v each of which have 2K elements and £ which has K elements. HINP (1986)

derive recursive relationships which permit convenient solution of the elements

of the parameter vector 6 - ($' , u'
,

£'). Once 6 is computed, /3 is then

identifiable as a solution to the normal equations (2.4).

To derive the asymptotic distribution of the estimator define the (5K +

1) dimensional data vector

(2.8) mi - [x i ,...,x i
(w i )

2K - 1
, Wi (wi)

2K
, y i ,...,y i (w i )

K
].

Define the population moments to be fi — E[m^] . The moment vector /i is
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consistently estimated by the sample average moment vector m and application of

the Lindeberg-Levy CLT yields the asymptotic distribution of m

d
(2.9) Jn (m - /*) -» N (o, fi) for fi = E [m^mi'] - w' .

The elements of 9 are then estimated by the continuous and continuously

diffentiable relationship 6 = h(/i) . First order approximations, also known as

the delta method, lead to the asymptotic distribution of G

d
(2.10) Jn (5 - 6) + N (0, HfiH') for H -= dh(fi)/8^'

The elements of the Jacobian matrix H can be calculated recursively with

computational details given in HINP (1986).

Lastly, we solve for fi using the normal equations (2. A) and the

estimated 0. Let D be the second moment matrix of (1, z^, ..., (z^)^) and D -

D(9) based on the estimated 6. We estimate fi by

(2.11) fi
- fr 1

i.

Define S| as the selection matrix which gives Sc 6 - { and S$ as the selection

matrix which gives S$ 6 - vec(D) . HINP (1986) derive the asymptotic distribution

i_ d
(2.12) 7n (fi -

fi)
- N (0, V) where

V - D" 1
[ S^ - (fi- ® I

K+1 ) S$ ] H fi H' [S£ - (/3'®I
R+1

) S^'D"
1

We have demonstrated identification and derived a consistent and asymptotically
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normal estimator in the case of a single replicated measurement for the

unobservable variable z^.

We now turn to identification and estimation when instrumental

variables which allow prediction of the unobserved regressor z^ are available.

Thus, we assume that z^ is determined by the p dimensional vector of instruments

(2.13) zi - qja + vj_
j_

- 1 n.

To state sufficient conditions for identification and estimation we change

assumption A.l.(ii) to an assumption that v^ and the instruments q^ are

independent. Otherwise the sufficient conditions are quite similar to the

previous case that we considered:

Assumption 2 : The random variables e^, rj^, vj_ , and q^ are jointly

i . i . d. with

(i) E («i I qi, vj_) - E (f/i | qi, v^ - , E (ci^i [ qi , Vi) - a €r?

(ii) vj is independent of q^ with E [vjj -

(iii) E [HCci, r,0\\ 2
] <-, E tMvi, qi ||

2(K + X)
] <«

(iv) All necessary moment matrices are nonsingular.

Again, the i.i.d. assumption can be relaxed to more general situations.

For purposes of identification we assume that a is known since it is

identified from

(2.14) xj[ - q^a + »7i
- V£ i - l,...,n.
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Let wj - qia and again denote «/j - E[(v^)J]. We must again determine the i/j for

identification and estimation.

Substitution of the instrumental variables into equation (2.1) yields:

K
(2.15) (i) yi - S 7i (wi)J + ei where

j-0 J

K p
(ii) 7j

- S [ ] /?p yp.j j-0 K

(iii) ei - ei + 2 J [

P
] /3p [(vi)

p -J-^
] (wi)J

j-0 P-J j
F P J

Equation (2.15) (iii) implies that E(e^
|
wj) - so that 7 is identified by the

least equares projection of equation (2.15) (i).

We now have the convolution of f) and v in 7 which must be sorted out

for identification. Before proceeding to do so, note that since vq — 1 and v\ —

0, we have 7^ — /S^ and 7^-1 — ^k-1- Thus, the two highest elements of /9 are

identified from equation (2.15) (i) alone which will subsequently lead to

over identification.

To complete the identification, we now multiply through equation (2.1)

by the observable variable x^ and we substitute z^ - w^ + v^_

:

K+l
(2.16) (i) x ivi " -Sn <H(w i)-'

+ u i where

K

6
i -^ [P]

ViVj J
" 1 K+1
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K+l K+l
sP'J

jS pSj t'l £
p _l

t(vi)
1- J

• Vj ) (Wi)J + [r, iyi - ain \

+ z^e* j_ - 1 n.

Again, the disturbance term in equation (2.16) (i) has zero conditional

expectation so that E[u^
|
w^ , vjj - 0. The estimate of 5 follows from the least

squares projection of equation (2.16) (i). We can again identify the two highest

order terms of /9 from Sj^+l ~ ^K anc^ ^K " ^K-l- Over identification of these two

parameters follows from the 7 and 6 coefficients.

Thus, we have (2K + 3) reduced form coefficients 70>---i7K>

c$0 , - - • , <$k+1 • We have K+l unknown coefficients and K unknown nuisance

parameters in u. Thus, we have overidentification of order 2, or equivalently,

we can discard two equations and still identify the unknown parameters. The

solution to the equations once again follows a convenient recursion relationship.

HINP (1986) give the recursion formulae.

Estimation proceeds from initial estimation of the reduced form

parameters 7 and 6. Given 7 and 6, we then estimate
f)

and v. This two step

procedure need not be asymptotically efficient; the topic is left to future

research. The derivation of the asymptotic distribution of the resulting

estimator is straightforward, but tedious. We give only a sketch here and direct

the interested reader to HINP (1986) who give the complete derivation. Taking

account of the fact that a must be estimated, the asymptotic distribution of the

reduced form parameter is normal, say

(2.17) /n"
7

6

7

8

d
. 1.

|
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Given equation (2.17) we can then obtain efficient estimates of the /9's by

minimum chi-square estimation. Denote the (2K + 2) vector of reduced form

coefficients, after elimination of Sq by

(2.18) ft - (7, S)

-= (tli, fl 2) where ft x - (7K , 7^, *K+1 '
^ k) '

Similarly, denote the 2K vector of b and u parameters as

(2.19) 6 - (£, v)

- (e lt 6 2 ) where &1 = (0K , 0^) .

The unknown 6 parameters follow from the reduced form II parameters

(2.20) n - h(6)

so rearrange the covariance matrix M from equation (2.17) to conform to equation

(2.20) and denote a consistent estimate of the rearranged matrix, V.

The minimum chi square estimator is then

(2.21) Q - min [ft - h (e) ]
' v" 1

[ft - h(e)].
e

The value of Q from equation (2.21) can be used to test the overidentifying

restrictions since it is distributed as a central chi square random variable with

2 degrees of freedom if the specification is correct. The test of identification
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is equivalent to a test of equation (2.2): a non-zero mean and non-unity slope

coefficient of zj cause the system to be just identified. The asymptotic

covariance matrix of the minimum chi square estimator takes the usual form

(2.22) Tn"
P - ft

N (0, (HV'l-H')" 1
) where H - 3h(e)/d6'.

The specification of equation (2.1) does not contain other variables

besides the polynomial terms. However, in many applications we might expect the

appropriate specification to be

K
(2.23) yi - 2

Q 0j ( Zi )J + R^ + ei 1 n.

where we assume that the Rj are measured without error. The usual partialing out

technique does not work for equation (2.23) because of the nonlinear errors in

variables specification. Instead, we apply two different approaches for the

replicated measurement and instrumental variables setups. The additional R^

variables are accounted for in the replicated measurement case by considering

equation (2. A), the normal equations. We need to augment z'y and z'z to include

R. Thus we need to form the matrices R'z and R'y. The latter matrix is directly

observable. The matrix R'z depends on the unobservable variable z; however,

Because 62 is just identified, equation (2.21) may be further simplified using
partitioned inverses. 62 follows from II2 , while the overidentified parameters 6^
are estimated from 11^ . See HINP(1986) for computational details.
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equation (2.5) with R^ included permits computation of an estimate of the

required moment matrix.

Inclusion of additional regressors in the instrumental variables case

is also quite straightforward. The addition of R^ to equation (2.15) (i) has no

effect on the disturbance e^ so that 7j in equation (2.15) (ii) remains the same.

Similarly, 5-; is estimated from equation (2.16) (i) after the term w^R^ is added

to the right hand size of the equation. In both cases least squares projections

yield consistent estimates of -y* and 6a so that estimates of /3 and v can be

calculated from the estimated reduced form parameters.

In this section we have proven identification and developed consistent

estimators for the polynomial specification when either a single replicated

measurement or instrumental variables are present. Additional replicated

measurements can be included easily; a minimum chi square combination of the

estimated parameters offers a convenient approach. Similarly, a replicated

measurement and instrumental variable situation can be combined using a minimum

chi square approach. In both cases we increase the efficiency of our estimator,

or alternatively, we can test the specification of our model. However, we do not

claim to have found the most efficient estimator since there exists an infinite

class of unconditional moment restrictions which can, in principle, be used in

estimation. We leave the construction of feasible efficient estimators which

attain an efficiency bound as a topic for future research.

This approach is equivalent to using the transformed replicated measurement
w - (I - R(R'R)" 1R)w together with equations (2.4)-(2.7).
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III. Errors in Variables in a General Nonlinear Specification

We now discuss identification and consistent estimation of a general

nonlinear errors in variables specification with errors in variables following

Hausman, Newey , and Powell (1988). Our estimator is limited to the replicated

measurement case; we have been unable to extend estimation as yet to the

instrumental variables case. Also, we do not currently have an asymptotically

normal distribution for the estimator. We lack the centering correction for the

estimator which would permit derivation of the asymptotic distribution. However,

limited Monte Carlo investigations indicate that the bias of the estimator is

small and that bootstrap estimates of the sampling distribution of the estimator

provide a good indication of the precision of the estimates.

We consider the general nonlinear regression model with additive

disturbance

:

(3.1) yi - f(z i? 0) + ej i
- 1 n.

where we take z to be a scalar. Inclusion of additional variables measured

without error is straightforward using the approach of the last section. The

variable zj_ is unobservable ; instead we observe x^ as in equation (2.2). The

replicated measurement w^_ is determined similarly by equation (2.3). Lastly, we

make assumption A.l (i)-(ii) of Section II where the assumption that vj_ is

independent of z^ is crucial for our estimator. The moment assumptions that we

make are

Assumption 3 : E
[ | « i 1

2
] and E

[
|f(zj_, P)\

2
]
are finite and there exists

T>0 such that E [ exp (T
|
(z^ , r)^, Vj_)|}] is finite.
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Using these assumptions and the results of Section II, we can estimate the

coefficients of the linear projection of y^ on polynomials of the true, but

unobservable , regressors.

We denote this polynomial approximation using the estimated moments for

the normal equations (2.4) as

(3.2) £p- j£o
ftjK ft

j+p
p-0....K.

where II(K) stands for a Kth order polynomial. Once we have the estimated n(K)

projection coefficients we can estimate the true regression function fo( z )
"

f(z,/?) by

(3.3) £K (z) - .S njK (zJ)

which is a nonparametric estimate of the regression function. Equation (3.3)

provides an estimate of the true least squares projection

(3. A) fK (z) - i
Q

IIjK (zJ)

of y^ on z-^(K) and also provides an estimate of the least squares projection of

fg(z^) on z^(K) because e^ has zero mean conditional on z^ by Assumption A.l (i).

Furthermore, existence of the moment generating function of Zj_, given assumption

A. 3, is sufficient for polynomials to form a basis for the space of square

integrable functions, which implies that

(3.5) lim^ E [(fo(zi) - fK Ui))
2

]
-



19-

For K large enough fj^(z^) provides an arbirarily good mean square approximation

of f (zi>.

Given the nonparametric estimate of the true regression function,

fR( z ) - we estimate P by imposing the restrictions implied by the parametric model

on f^( z ) • ^e use a minimum distance approach and obtain ft from

(3.6) P - argmin ^ fi J1
«(Xl ) [fj(X j.)

- f(Xi , P)]
2

where lo(x^) is a nonnegative weight function and B is a feasible set of parameter

values. Note that the observed variable x^ is used in equation (3.6) in place of

the unobserved variable z^. Other observed variables could also be used which

could lead to more efficient estimators. We restrict our attention here to the

xj_ with an analysis of other variables left to future research. The purpose of

the weight function w(x^) is to take account of the substitution of x^ for the

unobservable z^ so that the mean square approximation holds

(3.7) lim^ E [w(Xi ) { f (x t ) - fK (Xi))
2

]
-

Also, we require regularity conditions and an identification assumption to

proceed

Assumption k ; (i) B is compact. (ii) f(x^, P) is continuous at each P in B

with probability one. (iii) There exists d(.) such that

SUP
j9eB I

f(Xi
'

/9)
I ~ d(Xi) and E [d(x i )2j is finite

- <
iv

)
for

all p in B such that p / p , E [w(x i )(f(x i , Pq) - f(Xi , P))
2

]
>

where Pq is the true p.
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Our last assumption imposes a condition on the weight function

Assumption 5 : The distributions of z^ and x^ are absolutely continuous with

densities gz (.) and gx (-) respectively such that there is a positive constant C

with w(.)gz (.) < C gx (.).

While estimation of the weight function may sometimes require careful attention,

in the common case where the density of z^ is continuous and nonzero everywhere

and the the density of x^ is bounded, then any w(x^) which is zero outside some

bounded set will suffice.

Hausman, Newey and Powell (1988) then prove that given the assumptions

and the additional condition that the density of z^ is bounded away from zero on

an interval, then determined from equation (3.6) is consistent, plim /3 -=
fi , if

K which is chosen as a function of the sample size K(n) has the properties that

K(n) -* » and K(n)^ ln[K(n)
]
/ln(n) -» 0. Note that the growth rate for K is

somewhat slower than the square root of the natural log of the sample size.

In this section we have discussed a consistent estimator for the

general nonlinear errors in variables specification. We now apply this estimator

together with the estimators of Section II to estimate Engel curves on micro

data. Derivation of an estimator with two or more mismeasured variables and

derivation of the asymptotic distribution of the estimator of this Section are

both quite complicated problems which we defer to future research.
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IV. Estimation of Some Engel Curves

Estimation of Engel curves has long been an area of interest among

econometricians . Many of the early investigations used British data, and the

detailed cross section information collected in the annual Family Expenditure

Surveys has led to considerable further investigation. Many of these studies

investigate the best specification for the form of the Engel curves; Prais and

Houtthaker (1955,1971) and Leser (1963) are notable examples. The "Leser-

Working" form of Engel curve in which budget shares are regressed on the log of

income or expenditure has been widely adopted in recent research. Both the

translog specifications of Engel curves, e.g. Jorgenson, Lau and Stoker (1982),

and the AIDS specification of Deaton and Muellbauer (1980) use this

specification. An alternative specification, the quadratic expenditure system,

which specifies budget shares as a function of both the inverse of expenditure

and it square has been estimated by Pollak and Wales (1980).

Economic theory gives almost no general guidance in specification of

Engel curves. "Adding-up" of budget shares to one is the only restriction, and

this restriction is typically enforced in the data. However, in a notable paper

Gorman (1981) considered Engel curves in which either expenditure or budget

shares are specified as polynomials in functions of expenditure, e.g. log of

expenditure. Gorman makes the key assumption, as does most of the previous

demand curve literature, that the polynomial functions which contain expenditure

do not depend on price in the demand curve specifications. Given this "exactly

aggregable function" , Gorman demonstrates that the rank of the matrix of

coefficients for the polynomial terms in income is at most three. We

Lewbel (1986,1987) further considers Gorman's results for additional Engel
curve specifications.
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investigate Engel curve specifications of the Gorman form and provide tests of

his rank three restriction.

Few studies of Engel curves have used estimators other than least

squares or nonlinear least squares. The most notable exception is Liviatan

(1961). Liviatan noted that Friedman's (1957) relabelling of the classic errors

in variables model into "permanent" income and "transitory" income made the use

of current income as a predetermined variable inappropriate in family budget

studies. Liviatan also noted Summer's (1959) objection to the use of current

expenditure as the predetermined variable because of reasons of joint

endogeneity. He used instrumental variables with current income used as an

instrument for current expenditure. ^ Livitan's assumption that current income

is uncorrelated with the stochastic disturbances in an Engel curve specification

seems highly questionable. He justified the assumption based on Friedman's

assertion that "permanent" income and "transitory" consumption are uncorrelated

with each other. However, subsequent econometric research, e.g. Attfield (1978),

has demonstrated that the Friedman assumption is unlikely to hold true in family

budget data. Thus, alternative instrumental variables are necessary. Here we

investigate two alternative sets of instruments: expenditure in other periods or

determinants of income and expenditure such as education and age. Neither of

these alternative sets of instrumental variables should be correlated with the

stochastic disturbance in the Engel curve specifications , although we test the

assumptions subsequently.

] 2 Liviatan used IV on a linear Engel curve specification. Leser (1963) applied
a variant of Liviatan' s procedure. However, straightforward IV is inapplicable
to all of Leser 's Engel curve specifications, except his first two linear
specifications, because of the nonlinearity of his specifications. Inconsistent
estimates will result for reasons discussed in Section I. In particular, Leser's
best fitting specification (1963, p. 699) contains terms in both log expenditure
and the inverse of expenditure which makes application of regular IV inappropriate.
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We first consider a quadratic generalization of the Leser-Working Engel

curve specification where the budget share of commodity i is a function of both

log expenditure and the square of log expenditure:

(4.1) Wi - £ + 0! log(z) + p 2 log2 (z) + ei

where (^ is the stochastic disturbance. However, we do not observe actual

expenditure, but we instead have data on log x — log z + rj where we assume that

the error of observation satisfies the properties of Assumption A.l (ii).

Alternatively, a permanent income explanation can be attached to equation (4.1);

however, we are unwilling to make any assumption about the relationship of

permanent income and transitory consumption. Note that equation (4.1) satisfies

the Gorman rank 3 condition, while the usual translog-AIDS specifications based

on the Leser-Working specification have rank 2 coefficient matrices.

Our first results are from the 1982 Consumer Expenditure Survey (CES).

The CES collects data from families over 4 quarters so that we can apply the

repeated measurement techniques discussed in Section II. The basic data we use

are budget share and total expenditure for each family from 1982:1. We initially

use as the repeated measurement total expenditure from 1982:2. The repeated

observation estimator of equations (2. 5) -(2. 7) is used. We estimate Engel curves

on 5 commodity groups: food, clothing, recreation, health care, and

transportation. We report elasticity estimates and asymptotic standard errors at

3 quartiles so that the shape of the Engel curves can be compared:
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Table 4.1: Expenditure Elasticity Estimates Using 1982 CES Data

Repeated Measurement Estimator using 1982:2

(Asymptotic Standard Errors)

IV Estimates
Commodity Percentile

25th 50th 75th

Food .83 .74 .63

(.06) (.04) (.05)

Clothing 1.44 1.43 1.41

(.16) (.08) (.13)

Recreation 1.47 1.28 1.12

(-18) (.09) (.14)

Health .009 .10 .44

(.21) (.14) (.21)

Transpor

.

1.19 1.11 1.02

(.11) (.05) (.12)

OLS Estimates
Percentile

25th 50th 75th
.73 .68 .60

(.03) (.02) (.03)

1.29 1.14 .99

(.06) (.04) (.04)

1.51 1.28 1.08

(.09) (.06) (.06)

.50 .56 .68

(.09) (.07) (.09)

1.18 1.35 1.48

(.06) (.04) (.04)

Number of observations- 1324

Overall, with the exception of health the IV and OLS estimates are reasonably

close and both accurately estimate the elasticities. A joint test of the Leser-

Working specification, that all the 02' s are zero, is computed to be 9.75 for the

IV estimates. The marginal significance level for a x random variable with 5

degrees of freedom is about .08. Similarly, a test based on the OLS estimates is

computed to be 73.1 which has a marginal significance level of less than .001.

Thus, both the estimates, especially for food and recreation, and the statistical

tests give some indication that a quadratic term gives better estimates of Engel

curves on individual data. The usual assumption of constant budget share

elasticities which the Leser -working specification imposes appears inconsistent

with the 1982 CES data.

While the IV and OLS estimates are reasonable close, some sizeable

differences do occur. For instance the estimated food elasticity at the 25th
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percentile and the clothing elasticities at the 50th and 75th percentile are

quite different with both sets of elasticities estimated with a high degree of

accuracy. Also, the estimated transportation elasticities differ by a range of

25% to 50% at the 50th and 75th percentile between OLS and IV. To test for a

possible difference we do a Hausman (1978) type specification test of the IV

estimates versus the OLS estimates. The estimated statistic is 87.39 which is

distributed as a \ random variable with 15 degrees of freedom. Thus, we find

strong evidence that use of current expenditure in estimation of Engel curves on

micro data leads to errors in variables problems. An alternative method to

consider the problem is to note that the estimated var(f|) is .108 while the

estimated var(z) is .150. Thus, the measurement error in current expenditure is

about 42% of the total variance of .258 of the logarithm of measured expenditure.

The substantial proportion of measurement error in measured expenditure can lead

to significant problems in OLS-type estimators.

We now explore the Gorman results. Gorman's theorem implies that

higher order polynomial terms in log income will have a linear relationship to

the lower order terms since the matrix of coef f icieiits is at most of rank three.

For the polynomial generalization of equation (4.1), the rank restriction takes

the form that the ratio of coefficients of the cubic terms to the coefficients of

the quadratic terms will be constant across equations. First, we estimate a

generalization of equation (4.1) with a third degree term in log income included:

(4.2) Wi - £ + p l log(z) + p 2 l°g 2 U) + £3 log3 (z) + ££.

IT
This rank restriction result follows from Gorman (1981), p. 16, equation (1)
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The estimated Engel curve and elasticities are quite similar to those based on

the quadratic specification of equation (4.1) The \ statistic that the third

order terms are all zero for the IV estimator is 2.59 with five degrees of

freedom; the corresponding statistic for the OLS estimates is 10.57. Thus, the

IV estimates do not demonstrate much evidence for more than a quadratic term in

the budget share specification. The OLS estimates, with a marginal significance

level of about .07, are more ambiguous about the cubic terms. However, we will

use the quadratic specification in our subsequent estimation because we believe

that the IV estimates are likely to be better than the OLS estimates.

We then estimate the "Gorman statistic" to see whether the coefficients

in the cubic specific of equation (A. 2) have rank three. We find a rather

remarkable result (which we hope is not due to computational error) . Despite

considerable variation in the estimates of the ^2

'

s an<^ t^ie i$3' s > we find their

ratios to be remarkably close in actual values and estimated precisely although

we cannot estimate the individual coefficients very precisely. Thus, we find a

more special result than Gorman's result- -not only is the coefficient matrix of

rank three, but the linear dependency takes on a remarkably simple form.

Table 4.2: Estimated Ratios of ^3/^2 for Equation (4.2)

Commodity IV Ratio OLS Ratio

Food -24.98 -129.35
(0.47) (10739)

Clothing -25.24 -22.6

(0.56) (2.46)
Recreation -25.12 -22.97

(0.32) (2.17)
Health Care -23.31 -28.57

(5.18) (2.38)
Transportation -25.57 -34.09

(0.31) (9.05)
X (4) Statistic 1.60 7.85
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Thus , both the IV results and the OLS results demonstrate that the Gorman results

on rank 3 holds in the 1982 CES data. The one anomalous result for OLS is for

food where the estimated quadratic term is very near zero. This estimate leads

to the high estimated Gorman ratio as well as the very high estimated standard

error of the ratio. Note that the OLS results are not as good as the IV results

since the test statistic has a marginal significance level of about .10.

However, as before, we tend to prefer the IV estimates. Perhaps the results are

"too good" given the variation in prices faced by families in the sample which we

have no data on.

We now reestimate equations (4.1) and (4.2) by IV using expenditure

from 1982:3 in place of expenditure from 1982:2 to form the instrument. The

results are very similar to the results in Table 4.1:

Table 4.3: Expenditure Elasticity Estimates Using 1982 CES Data
Repeated Measurement Estimator using 1982:3

IV Estimates

Gorman Statistic

-25.18

(.38)
-25.18

(2.23)
-24.65

(1.01)
-28.34

(7.37)
-26.60

(7.10)

X
2
(4) Statistic 0.44 Number of Obs-1324

The x statistic for the Gorman ratios again shows no evidence of rejecting the

rank 3 restriction. A Hausman (1978) specification test type statistic for IV

Commodity Percentile

25th 50th 75th
Food .72 .69 .65

(.06) (.04) (.06)
Clothing 1.50 1.44 1.38

(.12) (.07) (.13)
E.ecreation 1.41 1.47 1.50

(.17) (.11) (.20)
Health .10 .23 .60

(.18) (.13) (-23)
Transpor

.

1.23 1.09 .94

(-09) (.05) (.10)
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versus OLS is estimated to be 135.71, which is distributes as \ with 15 degrees

of freedom. Again, a strong indication is found of the importance of measurement

error in the micro data and potential problems with the use of OLS-type

estimators. The estimated variance of the measurement error is .106 which is

extremely close to previous estimate and which represents 41% of the total

variance of the logarithm of measured expenditure. Thus, both sets of repeated

measurement estimates yield numerically consistent sets of coefficient estimates.

Up to this point, we have used the replicated measurement estimator for

our Engel curve specifications. Here we use the predicted IV estimator of

Section II, equations (2.13) and equations (2 . 15) - (2 . 16) , where the instruments

used include age, education, race, union membership, spouse age and employment,

and region and industry dummy variables. Thus, we use a "predicted value" for

expenditure to form the instruments to use in the nonlinear specifications where

the R/ of the prediction equation is about 0.3.

Table 4.4: Expenditure Elasticity Estimates Using 1982 CES Data
Using Predicted Expenditure Estimator

IV Estimates

Commodity Percentile Gorman Statistic Overid Statistic

25th 50th 75th
Food .69 .62 .51 -25.39 3.12

(.15) (.06) (.15) (.15)
Clothing 1.71 1.47 1.28 -25.22 1.35

(.35) (.01) (.25) (.21)
Recreation 2.35 1.51 .93 -25.94 0.59

(.45) (.11) (.31) (.66)
Health .15 .24 .50 -25.26 4.68

(.31) (.15) (.34) (.15)
Transpor. 1.59 1.02 .39 -26.61 1.46

(.23) (.08) (.25) (1.84)

X
2
(4) Statistic 2.43 Number of obs-1324
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Except for recreation and for transportation at the 75th percentile the estimated

elasticities are quite close to the repeated measurement estimates. A test that

all the quadratic terms are zero is estimated to be 11.78 which has a marginal

significance level about .04. Thus, again we find evidence that higher order

terms should be included in the Engel curve specification. A Hausman

specification test statistic is calculated to be 73.34 which again indicates that

n
the IV estimates are better than the OLS estimates. The \ (2) test for correct

specification from equation (2.21) is well below its critical value of 6.0 at the

5 percent level for each commodity. The test for overidentification does not

reject our specification.

We now do a \ test that the two sets of repeated measurement IV

estimates are the same. This test is equivalent to a test of the overidentifying

restrictions on the instruments. The \ statistic is estimated to be 12.4, and

since it has 15 degrees of freedom, no evidence is found to reject the hypothesis

of orthogonality of the instruments. However, the equivalent tests for the

predicted expenditure form of the IV estimator in relation to the repeated

measurement IV estimators yield \ statistics of 35.6 and 91.6, respectively,

both of which indicate that either the repeated measurement or the predicted

value instruments are not mutually orthogonal to the stochastic disturbance in

the Engel curve specifications. Since the repeated measurement estimators are

mutually consistent with each other, we tend to believe that they are the

superior estimators in the current situation. We cannot be more specific about

the relative superiority of the estimators without further research.

We repeat the IV estimation of equations (4.1) and (4.2) using 1972 CES

data where we predict expenditure using similar instruments. Repeated

These data were kindly provided to us by Professor Dale Jorgenson.
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observations on family expenditure are not available for 1972. The 1972 CES data

set is sufficiently large that we estimated the Engel curve only on 4 person

families to minimize potential family size effects on the estimates. The

estimated elasticities are reported in Table 4.5:

Table 4.5: Expenditure Elasticity Estimates Using 1972 CES Data
Predicted Expenditure Estimator

IV Estimates

Gorman Statistic Overid Statistic

1.23

3.82

2.39

0.41

2.31

(2.60)

X
2
(4) Statistic 0.54 Number of obs - 992

The estimated elasticity for transportation is below the 1982 estimates which may

well arise from the extremely large rise in gasoline prices between 1972 and

1982. The estimated IV Gorman ratios are again very close, and a x test fails

to come close to a rejection of equality. * Note that the estimated values of

the Gorman ratios differ from their estimated values in 1982. This result is to

be expected since the slope coefficients are, in general, nonlinear functions of

prices. The CPI increased by over 130% between 1972 and 1982 with significant

Commodity Percentile

25th 50th 75th
Food .76 .67 .54

(.12) (.07) (.13)
Clothing 1.43 1.36 1.22

(.89) (.83) (.80)
Recreation 1.32 1.41 1.49

(.13) (.10) (.17)
Health 1.07 .78 .44

(.20) (.11) (.21)
Transpor

.

.54 .59 .65

(.18) (.10) (.19)

IV OLS
-42.1 -44.5

(.48) (4.73)
-41.8 -42.8

(1.14) (.66)
-41.3 -43.5

(2.23) (1.65)
-41.1 -42.0

(1.67) (.50)
-42.2 -40.6

(.22) (2.60)

15 - 2Note that the estimated OLS Gorman ratios are also very close. The x (4)

statistic for the OLS estimates is 1.87 which indicates no grounds for rejection.
For completeness, the X (5) statistic that all the quadratic terms are zero is

17.2 which is strong evidence against the Leser-Vorking Engel curve specification
on micro data.
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differences in increases across expenditure categories. Thus, the ratios of

nonlinear functions of prices would be expected to change as prices change. A

Hausman (1978) type specification test of IV versus OLS is estimated to be 117.8.

Thus, we again find strong evidence of the importance of measurement error in the

1972 CES data as we did in the 1982 data. Lastly, the x
2
(2) of

overidentification of equation (2.21) once more does not reject our specification

of the Engel curve for any commodity.

One potential problem that we have not yet accounted for is errors in

variables in the left hand side variable, the budget shares, in equations (4.1)

and (4.2). To the extent that the errors in variables occurs in expenditure on a

given commodity, which forms the numerator of the budget share, no special

problem arises. However, to the extent that the denominator of the budget share,

total expenditure, is measured with error, estimation problems arise. Since the

measurement error enters the problem in a non-polynomial variable, no obvious

solution exists. But the problem can be eliminated by respecifying equations

(4.1) and (4.2) with commodity expenditure as the left hand side variable instead

of the budget share. The estimation procedure remains the same except for an

adjustment to the estimated standard errors of the coefficients to account for

heteroscedasticity

.

The results are presented in Table 4.6. We do not find that errors in

variables in the left hand side variable presents a significant problem although

this Engel curve specification does not fit the data as well as the earlier

specifications

.
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Table 4.6: Expenditure Elasticity Estimates Using 1982 CES Data

Commodity Expenditure is Left Hand Side Variable
IV Estimates

Gorman Statistic

-33.38

(33.18)
-15.26

(1.49)
-14.59

(27.04)
-16.61

(1.13)
-17.69

(0.82)

Commodity Percentile

25th 50th 75th

Food .89 .73 .62

(.08) (.04) (.07)

Clothing 1.72 1.61 1.36

(.23) (.11) (.16)

Recreation 1.55 1.26 1.05

(.17) (.11) (.20)
Health -.41 .15 .68

(.39) (.24) (.32)
Transpor

.

1.06 1.22 1.16

(.33) (-13) (.30)

*
2 (4) Statistic 2.29 Number of Obs-1324

The elasticity estimates are quite close to the elasticity estimates derived from

the budget share results of Tables 4.1 and 4.3. The only exception is the

estimated health elasticity at the 25th percentile which is estimated very

imprecisely. The Gorman ratios are all quite close to one another with the

exception of food, which again is measured quite imprecisely. The \ statistic

does not come close to a rejection of the Gorman restriction. Thus, when we

estimate the Engel curves in commodity expenditure form, rather than budget share

form, the results remain essentially unchanged. We again find support for the

Gorman restriction on the specification of the Engel curve.

Up to this point we have considered only polynomial Engel curves for

budget share data. However, Leser (1963) found evidence which indicated that the

following Engel curve specification was superior to the Leser-Vorking

specification:

(4.3) Wi - p + /9i log(z) + £2/z + f i-
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Thus , he generalized the Working specification to include the inverse of income

as well as its logarithm. We consider this extended Leser specification as well

as another generalization of the Leser-Working specification:

(4. A) wj[ - /3 + Pi log(z) + p 2 zlog(z) + ej..

Note that both equations (A. 3) and (4.4) are rank two specifications. The

coefficients of these generalized Engel curve specifications are estimated using

the general nonlinear errors in variables estimator of Section III, equation

(3.6). Recall that the estimation strategy of Section III involves fitting the

Engel curves with polynomials followed by estimation of the coefficients of the

nonlinear specifications using the predicted values of the budget shares from the

polynomial coefficient estimates. The estimated coefficients of equations (4.3)

and (4.4) follow from the best fitting polynomial. In 9 out of 10 cases the best

fitting polynomial is a second degree polynomial with the sole exception being

health care for the specification of equation (4.4) which uses a third degree

polynomial

.

The estimates of the nonlinear Engel specifications are given in Table

4.7
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Table 4.7: Estimates Using 1982 CES Data- -General Nonlinear Specifications 16

Eqijation (4 .3)

Commodity Percentile

25th 50th 75th

Food .82 .71 .59

(.060) (.031) (.068)

Clothing 1.45 1.45 1.42

(.13) (.11) (.15)

Recreation 1.43 1.23 1.09

(.15) (.11) (.17)

Health .06 .28 .60

(.19) (.13) (.27)

Transpor

.

1.16 1.08 1.01

(.08) (.07) (.14)

Equation (4 • 4)

Percentile

25th 50th 75th
.82 .76 .67

(.057) (.043) (.045)
1.45 1.41 1.39

(.13) (.076) (.084)

1.45 1.33 1.20

(.17) (.10) (.10)

.12 .04 .15

(.15) (.17) (.22)

1.17 1.12 1.07

(.09) (.06) (.08)

Note that the estimates of the elasticities are quite similar between the two

nonlinear specifications. Furthermore, the estimated elasticities are close to

the estimated elasticities for the polynomial specifications in Table 4.1. We

compare the closeness of fit of the nonlinear specifications to the predicted

values of the underlying polynomials since that is the criterion used to estimate

the coefficients in equation (3.6). For 4 of the 5 commodities, the extended

Leser specification of equation (4.3) fits better than the generalized

specification of equation (4.4). The exception is health care where none of the

Engel curve specifications do very well. However, to the extent that the

estimated elasticities are so similar, the choice of the "best" specification is

probably a rather unimportant exercise.

We now consider an additional nonlinear specification which accounts

for possible measurement errors in the left hand side variables, the budget

shares. We take the quadratic generalization of the Leser-Working Engel curve of

equation (4.1) and multiply both sides of the equation by total expenditure:

16 Standard errors are calculated by the bootstrap method here.
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(4.5) ei - j8 z + 01 zlog(z) + p 2 zlog 2 (z) + ei .

In equation (4.5) commodity expenditure is now the left hand side variable which

eliminates possible problems from measurement error in the denominator of the

budget shares in equations (4.1) and (4.2). Our estimates of equation (4.5) are

very similar to the estimates in Table 4.7 and earlier tables. For instance, the

estimated elasticities at the 50th percentile are (0.69, 1.46, 1.17, 0.37, 1.13).

Thus, the nonlinear specification of the quadratic version of the Leser-Working

Engel curve yields estimates very close to our previous estimates so that

measurement error in the left hand side variable again does not seem to be an

important problem.

Our final exploration of the Engel curve specification involves the

addition of demographic variables in equation (4.1). Differences in household

size have often been a focus of attention in the specification of Engel curves;

here we also include region of the U.S. to account for regional price differences

of the commodities as well as age of the household head to account for life cycle

effects. The demographic variables are all entered as indicator (dummy)

variables with 4 family size groups, 4 region groups, and 4 age groups. We

believe that this specification is preferable to the non- identified approach of

family equivalence scale specifications. The approach of equation (2.23) is used

to include the additional right hand side variables in the Engel curve

specifications

.

We now reestimate Tables 4.1 and 4.2 where we include the demographic

variables and used the repeated measurement estimator.



Commodity Percentile

25th 50th 75th

Food .72 .66 .59

(-05) (.06) (.07)

Clothing 1.47 1.43 1.39

(.14) (.13) (.12)

Recreation 1.17 1.16 1.15

(.17) (.17) (.17)

Health .21 -.09 -.33

(.17) (.23) (.39)
Transpor

.

1.07 1.07 1.06

(.10) (.10) (.11)
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Table 4.8: Expenditure Elasticity Estimates Using 1982 CES Data

Repeated Measurement Estimator using 1982:2
IV Estimates

Gorman Statistic

-9.93

(6.17)
-10.44

(8.23)
-14.80

(.43)
-14.01

(.52)
-15.34

(.93)

X
2 (4) Statistic 1.90 Number of Obs-1321

3 Family Size, 3 Age, and 3 Region variables are included

The estimated quartile elasticities change very little from the specification

which omits demographics, with the sole exception of the health equation. The

health equation elasticities are estimated very imprecisely with the negative

coefficient estimates accompanied by quite large asymptotic standard error

estimates. The Gorman ratios are not as close as in Table 4.2 although the test

statistic takes on almost the same value which indicates no reason to reject the

Gorman restrictions. The food and clothing ratios are smaller in magnitude than

the other three commodities. However, the Gorman ratio for food and clothing are

estimated very imprecisely. We again find strong evidence against the Leser-

Working specification of equation (4.1) and evidence in favor of the cubic

specification of equation (4.2). The x (5) statistic is estimated to be 48.2.

The Hausman (1978) test of IV versus OLS with demographics is 473.0 which

indicates strong evidence of measurement error since it is distributed as a

X (10) random variable under the null hypothesis.
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Despite the closeness of the quartile elasticity estimates without and

without demographic variables included, we do find a quite significant influence

of demographic variables on expenditures shares. We present the estimates

results in Table 4.9:

Table 4.9: Coefficient Estimates for Demographic Variables

HC Transportation

.01

(-02)

.03

(.03)

.01

(.01)

-.00

(.01)

-.01

(.04)

.01

(.04)

.01

(.01)

.01

(.01)

.00

(.01)

05 .06 .21

We find fairly sizeable age effects in the estimated share equations. The region

effects are not particularly large which helps support the necessary assumption

of constant prices across the US in the Engel curve specification. The notable

Commodity Food Clothi

Agel (19-29) -.04 - .01

(.01) (.01)

Age2 (30-39) .04 .01

(.02) (.01)

Age3 (40-49) -.00 .00

(.01) (.00)

Regl (NE) .01 .00

(.01) (.00)

Reg2 (W) .01 .01

(.03) (.01)

Reg3 (MW) -.01 .01

(.03) (.01)

Sizel (2) -.00 -.00

(.01) (.00)

Size2 (3) .01 -.01

(.01) (.00)

Size3 (4) .01 -.00

(.00) (.00)

Mean Share .22 .06

-.00 -.02

(.01) (.01)

.01 .07

(.01) (.02)

.00 .01

(.01) (.01)

.01 -.00

(.00) (.01)

-.01 - .08

(.02) (.03)

.02 .01

(.02) (.03)

-.01 .01

(.00) (.01)

-.01 .02

(.01) (.01)

.00 .00

(.00) (.00)



exception is the Western region for health care. The health care equation is

difficult to estimate overall; the estimated effect here may arise from the much

larger share of health maintenance organizations in the West in 1982. The family

size effects are statistically significant although they have only a small effect

compared to the shares in expenditure of the five commodities.

We then reestimated the Engel curve specifications for 1982 using the

second repeated measurement. The estimated elasticities, not reported here, are

quite similar to Table 4.7 and the demographic effects are quite similar to Table

A. 8. The 5 Gorman ratios are estimated to be (-8.26, -8.10, -9.51, -7.68,-

11.86). Thus, the ratios are once again quite close to each other with a xC-0

test statistic of 3.97. The test for the quadratic against the cubic

specification is 86.4 which once again gives strong evidence against the Leser-

Working specification. The Hausman test statistic of IV versus OLS is estimated

to be 675.8. However, when we include the demographic variables the two sets of

replicated measurement results are no longer nearly so mutually consistent as

before. The x (10) statistic for the test of overidentification is estimated to

be 50.4 which easily rejects the overidentifying restrictions.

In this section we have estimated various Engel curve specifications

where we have taken account of errors in measurement in income or expenditure.

We find very strong evidence that substantial measurement error exists in the CES

data. We also find strong evidence that equation (4.2) is preferable to the

Leser-Working specification of equation (4.1). However, we do not find support

for the hypothesis that more general nonlinear specifications or higher order

polynomial terms than cubic are needed. We find strong support for the Gorman

rank condition which limits polynomial Engel curve specifications to rank 3. Our

results also show that demographic variables have significant effects in Engel



39-

curve specifications of the share. Lastly, we have demonstrated the feasibility

and importance of using consistent instrumental variable estimators in nonlinear

econometric model specifications.
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